3.66 \(\int \sqrt{b \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=136 \[ \frac{2 (3 A+C) \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right ) \sqrt{b \sec (c+d x)}}{3 d}+\frac{2 B \sin (c+d x) \sqrt{b \sec (c+d x)}}{d}-\frac{2 b B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{2 C \tan (c+d x) \sqrt{b \sec (c+d x)}}{3 d} \]

[Out]

(-2*b*B*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*(3*A + C)*Sqrt[Cos[c + d*x
]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(3*d) + (2*B*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/d + (2*C*Sq
rt[b*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.12765, antiderivative size = 136, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {4047, 3768, 3771, 2639, 4046, 2641} \[ \frac{2 (3 A+C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{3 d}+\frac{2 B \sin (c+d x) \sqrt{b \sec (c+d x)}}{d}-\frac{2 b B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{2 C \tan (c+d x) \sqrt{b \sec (c+d x)}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(-2*b*B*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqrt[b*Sec[c + d*x]]) + (2*(3*A + C)*Sqrt[Cos[c + d*x
]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(3*d) + (2*B*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/d + (2*C*Sq
rt[b*Sec[c + d*x]]*Tan[c + d*x])/(3*d)

Rule 4047

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 4046

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> -Simp[(C*Cot[
e + f*x]*(b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x]
/; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \sqrt{b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\frac{B \int (b \sec (c+d x))^{3/2} \, dx}{b}+\int \sqrt{b \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx\\ &=\frac{2 B \sqrt{b \sec (c+d x)} \sin (c+d x)}{d}+\frac{2 C \sqrt{b \sec (c+d x)} \tan (c+d x)}{3 d}-(b B) \int \frac{1}{\sqrt{b \sec (c+d x)}} \, dx+\frac{1}{3} (3 A+C) \int \sqrt{b \sec (c+d x)} \, dx\\ &=\frac{2 B \sqrt{b \sec (c+d x)} \sin (c+d x)}{d}+\frac{2 C \sqrt{b \sec (c+d x)} \tan (c+d x)}{3 d}-\frac{(b B) \int \sqrt{\cos (c+d x)} \, dx}{\sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{1}{3} \left ((3 A+C) \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=-\frac{2 b B E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}}+\frac{2 (3 A+C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{3 d}+\frac{2 B \sqrt{b \sec (c+d x)} \sin (c+d x)}{d}+\frac{2 C \sqrt{b \sec (c+d x)} \tan (c+d x)}{3 d}\\ \end{align*}

Mathematica [C]  time = 1.83443, size = 249, normalized size = 1.83 \[ \frac{\sqrt{b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (\frac{4 \cos (c+d x) (3 B \csc (c) \cos (d x) \cos (c+d x)+C \sin (c+d x))}{d}-\frac{i e^{-3 i (c+d x)} \left (1+e^{2 i (c+d x)}\right )^{5/2} \left (\left (-1+e^{2 i c}\right ) (3 A+C) e^{i (c+d x)} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-e^{2 i (c+d x)}\right )+3 B \left (-1+e^{2 i c}\right ) \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i (c+d x)}\right )+3 B \sqrt{1+e^{2 i (c+d x)}}\right )}{\left (-1+e^{2 i c}\right ) d}\right )}{3 (A \cos (2 (c+d x))+A+2 B \cos (c+d x)+2 C)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(Sqrt[b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*(((-I)*(1 + E^((2*I)*(c + d*x)))^(5/2)*(3*B*Sqrt
[1 + E^((2*I)*(c + d*x))] + 3*B*(-1 + E^((2*I)*c))*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + (
3*A + C)*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E^((3*
I)*(c + d*x))*(-1 + E^((2*I)*c))) + (4*Cos[c + d*x]*(3*B*Cos[d*x]*Cos[c + d*x]*Csc[c] + C*Sin[c + d*x]))/d))/(
3*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*(c + d*x)]))

________________________________________________________________________________________

Maple [C]  time = 0.279, size = 647, normalized size = 4.8 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)

[Out]

2/3/d*(b/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))^2*(3*I*A*sin(d*x+c)*cos(d*x+c)^2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)-3*I*B*sin(d*x+c)*cos(d*x+c)^2*(1/(cos(d*x+c
)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)+3*I*B*sin(d*x+c)*cos(d
*x+c)^2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)+I
*C*sin(d*x+c)*cos(d*x+c)^2*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-1+cos(d*x+
c))/sin(d*x+c),I)+3*I*A*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-1+cos(d*x+c))
/sin(d*x+c),I)*cos(d*x+c)*sin(d*x+c)-3*I*B*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)*(1/(cos(d*x+c)
+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+3*I*B*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)
+1))^(1/2)*EllipticE(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)*sin(d*x+c)+I*C*(1/(cos(d*x+c)+1))^(1/2)*(cos(d
*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*cos(d*x+c)*sin(d*x+c)-3*B*cos(d*x+c)^2-C
*cos(d*x+c)^2+3*B*cos(d*x+c)+C)*(cos(d*x+c)+1)^2/cos(d*x+c)/sin(d*x+c)^5

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec{\left (c + d x \right )}} \left (A + B \sec{\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))**(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)

[Out]

Integral(sqrt(b*sec(c + d*x))*(A + B*sec(c + d*x) + C*sec(c + d*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt{b \sec \left (d x + c\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c)), x)